MapReduce to calc ChiSquare-value of Amazon Reviews corpus

Alexander Lorenz Tobias Grantner
Vienna University of Technology Vienna University of Technology

Maximilian Kleinegger
Vienna University of Technology

1 Introduction

This report presents a challenge that requires writing a MapReduce program to address. Simply put,
we aim to compute and retrieve the top 75 terms for each category from all Amazon reviews. The
report includes a description of the problem, detailed information about it, the approach taken to solve
it, and a conclusion on the topic.

2 Overview

This section explains the problem we want to solve with a MapReduce program. Our goal is to identify
terms that effectively differentiate between different categories of reviews. We will accomplish this by
implementing MapReduce jobs to compute chi-square values for terms in the review datasetﬂ The
preprocessing steps include tokenization into unigrams, case folding, and stopword filtering using a
predefined list. Additionally, tokens consisting of only one character will be filtered out. The MapReduce
jobs will efficiently:

1. Calculate chi-square values for all unigram terms within each category.
2. Rank the terms based on their chi-square values and retain the top 75 terms per category.

3. Merge the ranked term lists across all categories for further analysis.

3 Methodology and Approach

In this section, we outline how we approached the problem and describe the steps we took to solve it.
We implemented the MapReduce program in Python using the MRJob E| library. The program consists
of three MapReduce steps, which are visualized in Figure

The first step pre-processes the input and calculates the number of documents in a category that
contains a term n; . and the number of documents in a category n. for each category c and term ¢. It
consists of a mapper, a combiner and a reducer. The mapper parses each line of the input file, extracts
the category and the review text, and tokenizes the review text into unigrams by splitting, case folding
and filtering out duplicates, stopwords and single-character tokens. The mapper emits a key-value pair
for each term in the review, with the key being a tuple of the category and the term, and the value
being 1. Additionally, the mapper emits one further key-value pair, with the key being a tuple of the
category and None, and the value being 1. It is used to count the number of documents in each category
n¢, which cannot be done by adding up n . for all terms, since a document can contain multiple terms
and would result in documents being counted multiple times. The combiner and reducer are then used
to aggregate the document counts. The result of the first step is a key-value pair for each term in each
category, with the key being the term, and the value being a tuple of the category and the number of
documents.

In the second job, we compute the number of documents across all categories that contain a term
ny and the total number of documents n. In the case of the term given in the key of the input not
being None, the values contain the category and n; . for the corresponding category. By summing up

Thttps://cseweb.ucsd.edu/~jmcauley/datasets/amazon/links.html
%https://mrjob.readthedocs.io/


https://cseweb.ucsd.edu/~jmcauley/datasets/amazon/links.html
https://mrjob.readthedocs.io/

the n; . values over all categories, we get the number of documents across all categories that contain
the term n;. On the other hand, if the term is None, the values contain the category and n. for the
corresponding category. By summing up the n. values over all categories, we get the total number of
documents n. The second step emits a key-value pair for each category the term occurred in, with the
key being the category, and the value being a tuple of the term, n;. and n;. For the term None, the
value is a tuple of None, n. and n.

The third job calculates the number of documents across all terms that are in a category n., calculates
the chi-square values for each term in each category, ranks the terms based on their chi-square values
and retains the top 75 terms per category. It again consists of only a reducer, which receives n; ., ns,
n. and n for each term in a certain category. With these values, we can calculate the chi-square value
for each term using the following formula:

2 n-(A-D—-B-C)?
X TA¥B) - (A+C)- (B+D)-(C+D)

n = total number of documents

A = ny ..number of documents in ¢ which contain ¢

B =n; — A ..number of documents not in ¢ which contain ¢
C =n,— A ... number of documents in ¢ without ¢

D =n—A— B - C ..number of documents not in ¢ without ¢

The reducer then ranks the terms based on their chi-square values and retains the top 75 terms
per category. The result of the third step is a key-value pair for each category, with the key being the
category, and the value being a list of the top 75 terms for the category.

What is now left to do is to bring the results per category in the form of
<category name> term_1st:chi”2_value term_2nd:chi”2_value ... term_75th:chi”2_value,
sorted by the category name, and create a dictionary of all terms occurring in the top 75 of any category.
These steps could have been implemented in a fourth MapReduce step, collecting all results under a
None key in the reducer. However, we decided to implement these steps in the Python script calling
the MapReduce job, since we have to collect all resulting data in memory anyway.

4 Conclusions

Overall, this assignment proved quite beneficial for gaining a fundamental understanding of MapRe-
duce programming techniques tailored for processing large text corpora and large amounts of data in
general. As each of us came up with our own solutions initially, it was interesting to observe how one
decomposed the problem domain into various stages, employing different alignments of key-value pairs.
Nevertheless, during the local execution of map reduce tasks, we obtained identical chi-squared solu-
tions, yet encountered minor variations in the ordering when values were equal. To combat this issue,
we decided to sort the results of each category by term in ascending order when chi-squared values are
equal, resulting in identical results of our solutions.

At last, we focused on improving the runtime efficiency. Techniques such as iteratively yielding
key-value pairs, constructing keys consisting of tuples, and introducing a combiner were employed to
achieve this objective, to lower reducer size, replication rates, and network costs.

Depending on server usage, we managed to achieve a runtime of approximately 25 minutes on the
full dataset.



(category,null), 1
(category, token), 1

Combiner

|

(category,null), n_docs_by category
(category, token), t_count_by_category

2 N

(category,null), n_docs_by category (category, token), t_count_by_category
Reducer Reducer

\ /

token, (category, t_count_by category
null, (category, n_docs_by category)

s =

token, (category, t_count_by category null, (category, n_docs_by category)
Reducer Reducer

v .

category, (null, n_docs_by category, total_n_docs)
category, (token, t_count_by_ category, total n_token_across_docs)

'

category, (null, n_docs_by category, total n_docs)
category, (token, t_count_by_category, total n_token_across_docs)

-

Reducer

category, ([token, chi_squared_value],

Figure 1: MapReduce flowchart



	Introduction
	Overview
	Methodology and Approach
	Conclusions

