
Evolutionary Algorithm & Hybrid Approaches

Maximilian Kleinegger*
Vienna University of Technology

Martin Wustinger*
Vienna University of Technology

*All authors contributed equally to this research.

1 Introduction

This report aims to provide insight into the second programming assignment. It includes all
the necessary information about the assignment, the algorithms implemented, the parame-
ters tuned, and the results obtained. Furthermore, it outlines the challenges that had to be
overcome during the development process.

2 Overview

In this programming exercise, we are tasked with developing two algorithms for the MWCPP.
We have chosen the Evolutionary/Genetic Algorithm and a hybrid algorithm. Additionally,
we will perform hyperparameter tuning and conduct statistical significance testing before final
evaluation on the provided instances.

To begin, let us briefly revisit the Minimum Weighted Crossing with Constraints Problem
(MWCCP): This problem involves working with a bipartite graph G = (U ∪ V,E), where the
goal is to minimize the sum of weights of the crossed edges while maintaining constraints such
that that vertex v must appear before vertex v′. To achieve this, we aim to find a permutation
π of the vertices V such that the objective function is minimized:

f(π) =
∑

(u,v)∈E

∑
(u′,v′)∈E u<u′

(wu,v + wu′,v′) · δπ((u, v), (u′, v′))

Here, δπ(·, ·) is an indicator function that returns 1 if the two edges cross in the solution
defined by the permutation π, and 0 otherwise. Formally, it is defined as:

δπ((u, v), (u
′, v′)) =

{
1, if posπ(v) > posπ(v

′),

0, otherwise.

3 Methods

This section describes the implemented algorithms.

3.1 Evolutionary/Genetic Algorithm

Since we wanted to implement an Evolutionary/Genetic Algorithm to solve our problem, we
encountered one major challenge: the constraints. Handling these constraints proved to be
the most cumbersome aspect, especially since evaluating them has a complexity of O(|V |2).
To address this, we opted for a strategy where the solutions generated in each generation are
inherently valid, thereby avoiding the additional step of checking for validity.

For this reason, we implemented the genetic algorithm as a Biased Random Key Ge-
netic Algorithm (BRKGA), which inherently avoids constraint violations. The approach

1

is based on an initially valid solution, which we split into Elitist and Non-Elitist groups. We
then always select one parent from each group to generate new valid solutions. These solutions
are diversified by introducing randomly mutated solutions to prevent premature convergence
to the best Elitist solution. To achieve this, we implemented the following functions:

• Encoding: We encoded all the nodes in the solution with random numbers, as is typical
for such algorithms.

• Decoding: Solutions were sorted by their random numbers and used as a base to gen-
erate valid solutions. To ensure correctness, especially at the beginning, we adopted a
similar approach to our construction heuristic. Preferred positions were stored based on
the sorted random keys, all constraints were mapped out, and based on open constraints
(incoming edges) and preferred positions, we decoded the solution into a valid one.

• Recombination: We followed the recombination approach proposed by BRKGA. Specif-
ically, one parent was selected from the Elitist group and one from the Non-Elitist group
to perform a biased crossover that favored the Elitist. The degree of bias was controlled
by the parameter rho br, and the fraction of Elitists was controlled by elite fraction.

• Mutation: Mutated solutions were generated for each new generation and replaced
the worst solutions from the current population. The fraction of mutated solutions was
controlled by mutation fraction.

• Fitness Function: The fitness function was implemented with Cmax representing the
current worst solution and g(I) representing the objective value:

f(I) =

{
Cmax − g(I), if g(I) < Cmax,

0.01, otherwise.

3.1.1 Problems & Possible Optimizations

The main problems of this algorithm for the MWCPP are twofold. First, we must calculate
the objective value, which has a complexity of O(|V |2), and perform the respective correctness
check, which is also in O(|V |2). This is not computationally cheap, especially as |V | increases
and the number of instances per generation grows. To avoid at least the second check, we
opted for BRKGA, where fairness is only verified for mutated solutions.

However, we must acknowledge that this algorithm is not the most suitable approach for
this problem, particularly when comparing its runtime to, for example, a Local Search using
the first improvement heuristic, which can explore much more of the search space. To address
these limitations, we attempted optimizations such as parallelizing and caching solutions.

Unfortunately, since we are using Python and are thus restricted by the Global Interpreter
Lock (GIL), the first approach did not yield any improvements. Additionally, the second
approach did not produce significant gains, as its benefits were too marginal. Considering the
memory effort required, caching was not feasible for larger instances.

3.2 Construct Solve Merge Adapt

The Construct, Merge, Solve, and Adapt (CMSA) algorithm is a metaheuristic optimization
approach designed to solve complex combinatorial problems efficiently. CMSA operates by
iteratively constructing partial solutions, merging these into a restricted solution pool, and
solving the resulting subproblems using an exact method, in our case an Integer Linear Pro-
gram. The adaptative component dynamically adjusts the restricted solution pool based on
feedback from prior iterations, promoting convergence to high-quality solutions.

2

3.2.1 Integer Linear Program

In our implementation we use an Integer Linear Program (ILP) in the solve step of our CMSA
algorithm. We use the following formulation:

Given:

• wij , i, j ∈ V , sum of weights of edges that cross if i would come before j in a solution π.

• graph G = (V,E) and set of constraints C

Variables:

• binary xij , i, j ∈ V, i < j, states whether the nodes i and j are in their numerical order
in the solution. Hence, the variable xij = 1, if posπ(i) < posπ(j) for solution π.

Model:

min
∑
i∈V

∑
j∈V,i<j

wijxij + wji(1− xij) (1)

xij = 1 ∀(i, j) ∈ C (2)

xij + xjk − xik ≤ 1 ∀i, j, k ∈ V (3)

xij + xjk − xik ≥ 0 ∀i, j, k ∈ V (4)

Description:

(1) Objective: Minimize the total sum of corssing edge weights.

(2) Given Constraints: each of the given constraints must be satisfied.

(3)/(4) Transitivity constraints: if i and j are in the same order as j and k, then i and k have
to be in that order as well.

3.2.2 Algorithm and Optimization

The algorithm operates on so called solution components. In our case a solution component
was, similar to the variables of the ILP, simply the decision wheter two nodes are in their
numerical order in the solution or not. In our implemented the algorithm executes the following
three tasks in a repeated manor. At first we create randomized greedy solutions, with the
greedy algorithm from the previous exercise. after each greedy we update the set of solution
components based on the new solution and add all components that aren’t already included.
Secondly, we update the ILP Model, by fixing the variables based on the solution components
contained in the set. Hence, if a solution component only appears once, so either wit hthe
value 0 or 1, we can also set the variable of the ILP to that value. Lastly, we increase the age
of each component by one and reset the age of each component contained in the ILP solution
back to 0.

Optimization We could have omitted the given constraints from the ILP or don’t track the
solution components related to these constraints, since they have allways a fixed value and are
tracked twice in our solution. However, Gurobi should be intelligent enough to omit duplicate
constraints.

3

4 Hyperparameter Tuning with SMAC3

Sequential Model-Based Algorithm Configuration (SMAC) is an efficient approach to hyper-
parameter tuning that leverages a probabilistic model to explore the hyperparameter space.
SMAC iteratively refines its search by selecting the most promising configurations to evaluate,
focusing computational resources on regions of the search space that are likely to yield the best
results. Since the task was to tune hyperparameters not for a single instance, but for a group
of instances, we decided to create a more sophisticated objective function for SMAC to opti-
mize, rather than tuning each instance individually and then aggregating the results. Different
instances within the same size group often have drastically different objective functions, so
simply summing the objective values would not have been beneficial. Such an approach would
favor instances with larger weights or more edges. To address this, we generated a fixed greedy
baseline for each instance, and the objective value for each instance was calculated by dividing
the value returned by either BRKGA or CMSA by this baseline. By summing these normalized
scores, we obtained a more robust metric for comparing multiple runs of the algorithms.

BRKGA
Instance Size elite frac max time mutation frac pop size rho br

small 0.29 900 0.09 242 0.61
medium 0.29 900 0.12 157 0.61
medium large 0.12 900 0.21 76 0.58
large 0.10 900 0.21 76 0.58

Table 1: Tuned BRKGA Hyperparameters

CMSA
Instance Size construct time ilp time k max age max time

small 2 4 6 3 10
medium 16 12 35 6 50
medium large 14 32 6 3 100
large 25 77 5 2 300

Table 2: Tuned CMSA Hyperparameters

For the final run of the competition instances, we set the max time for both algorithms
to 900 seconds for each instance size. Initially, we chose to set a lower max time during
the hyperparameter tuning process to speed up the individual runs. However, in retrospect,
considering that both algorithms, especially CMSA, took significant time for precomputing
and initializing the ILP, we could have easily set the max time to 900 seconds during tuning
for each instance size as well.

Notably, for BRKGA, we observe an inverse trend in the hyperparameters, except for rho br.
This could be attributed to the fact that, for larger instances, a more diverse exploration is
required, as the restriction on running time has a much greater influence compared to smaller
instances. This trend is also evident in the pop size, where the algorithm prioritizes more
generations for larger instances than for smaller ones. Therefore, the max time, depending on
the instance size, clearly has a significant impact. The results could potentially differ if we
used the number of generations as a stopping criterion instead of a fixed maximum runtime.

4

5 Significance Testing

We proceed with statistical testing to determine whether one of our tuned algorithms signifi-
cantly outperforms the other. For this, our null hypothesis is:

H0 : θBRKGA = θCSMA

We test this against the following alternative hypothesis:

H1 : θBRKGA ̸= θCSMA

Additionally, we aim to assess whether BRKGA consistently performs better than CSMA.
For this purpose, we propose a second alternative hypothesis:

H ′
1 : θBRKGA < θCSMA

To test these hypotheses, we run both tuned algorithms on all test instances 30 times to
collect results. Since we have an equal number of results for both algorithms on each instance,
we decided to use paired tests as our primary approach. Finally, when determining whether
to use a t-test or a Wilcoxon test, we will consider the distribution of the differences for each
instance.

Figure 1: Histogram of θBRKGA − θCSMA

for test instance 200 20 00002
Figure 2: Histogram of θBRKGA − θCSMA

for test instance 200 20 00005

As shown in Figure 2 and Figure 1, the data does not closely follow a normal distribution.
Therefore, we decided to proceed with the Wilcoxon test.
Referring to Table ??, we observe that for all instances, there is a significant difference when
considering H1. Additionally, not a single instance shows BRKGA performing significantly
worse than CSMA, as the p-value for H ′

1 is 1 for all instances.
Furthermore, we conducted the same test for the best solutions found for each instance, using
only those in the Wilcoxon test. The results, presented in Table 3, reveal the same pattern as
observed previously.

p-value H1 p-value H ′
1

0.00 1.00

Table 3: p-values for only best found solutions over all instances

Therefore, we can conclude that CSMA significantly performs better than BRKGA.

5.1 Results

We present the results of all runs on the test instances in Table ??. Notably, we did not apply
any normalization to ensure comparability with the tables from Programming Assignment 1.

5

Furthermore, Figure 3 and Table 7 display the results obtained by applying both algorithms
to the competition instances. Since we initially had sufficient time, we decided to use both
algorithms instead of selecting only the better one, as suggested in the exercise description.
While CSMA clearly outperforms BRKGA, it requires significantly more preprocessing time.
This trade-off makes it difficult to declare a clear winner in some cases. For this reason, we
wanted to highlight the contrast between a faster but worse-performing algorithm and a slower
but better-performing one.

6 Conclusion

In conclusion, we can state that CSMA using an ILP clearly outperforms BRKGA due to the
nature of the MWCCP problem. This superiority is primarily attributed to the optimality of
ILP compared to Evolutionary Algorithms and the fact that dealing with invalid solutions is
significantly more time-consuming when using BRKGA. Calculating the objective value and
verifying the correctness of each solution requires substantial computational effort, which be-
comes increasingly challenging as the population size grows. Consequently, CSMA outperforms
BRKGA in terms of solution quality.
However, while the ILP approach is highly effective, it has one major downside: the construc-
tion of the ILP formulation takes an exceptionally long time compared to BRKGA. As a result,
even though we achieve optimality for many instances, the overall time required often exceeds
the original time limit proposed. Thus, while very effective, the ILP approach is also very
time-consuming, making it less suitable for certain instances.
Overall, both techniques performed well, but the clear winner is CSMA.
Finally, comparing these results to the first assignment, we can observe that a Local Search or
Variable Neighborhood Descent (VND) with the respective neighborhood structures and the
first improvement heuristic achieve comparable or even better results in significantly shorter
times. This is not only impressive but also highlights the efficiency of these simpler tools,
demonstrating their value despite their relative simplicity.

6

7 Appendix

Figure 3: Comparison of BRKGA and CMSA on Competition Instances

Instance BRKGA CMSA

obj init time algo time obj init time algo time

inst 50 4 00001 76287 1 204 76269 0 26
inst 200 20 00001 21617809 37 912 21456107 39 210
inst 500 40 00003 69593380 36 912 67939372 517 884
inst 500 40 00012 293280893 56 921 287052995 496 901
inst 500 40 00021 592906278 65 943 584549471 492 680
inst 1500 120 00001 3297468098 223 952 3152139305 6953 1288
inst 1500 120 00002 4593496613 257 1040 4403862046 7665 913
inst 1500 120 00003 6090599476 271 1135 5851597299 6567 938

Table 4: Comparison of BRKGA and CMSA on Competition Instances

7

	Introduction
	Overview
	Methods
	Evolutionary/Genetic Algorithm
	Problems & Possible Optimizations

	Construct Solve Merge Adapt
	Integer Linear Program
	Algorithm and Optimization

	Hyperparameter Tuning with SMAC3
	Significance Testing
	Results

	Conclusion
	Appendix

